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In the article “On the Theory of Motion of a Nonholonomic System. Theorem 
on a Reducing Multiplier”, Chaplygin [I] promulgated a certain integral 
variational principle for a class of nonholonomic systems. 

Let c, ?j, q. ql be the Lagrange coordinates of a material system which 
satisfy two nonholonomic equations 

8’ = aq’ + am’ , 7’ = bq’ -I- hql’ 

whose coefficients a, aI, b, bl do not depend on 5, rj and time t. Re 
assume also that the kinetic energy T, and the force function U are in- 
dependent of <. ‘7 and t. 

Through the introduction of a new independent variable T by means of 
the equation Ndt = d-r, Chaplygin selected a function N(q, ql) (the so- 
called “reducing multiplier”) in such a way that the equations of motion 
of a system in the space q, ql, I would take on the canonical form. For 
this, the function N had to satisfy, identically in the impulses 
p = aT*/a& p1 = aT”/&+ the equation 

aT* 1 aN aT* 1 8N 
NS----+~-;tT~=O 

a91 N %I 
(0.1) 

Here 

and P(c;r, qla 4, i1> is the reduced expression for the kinetic energy. 
For such a function N in the space q, ql. t, Hamilton’s principle is 
valid: 

71 

6 (T* + U) df = 0 
s 
0 
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Returning now to the time t, Chap&gin obtains the theorem: if the 
reducing multiplier N given by (0.1) exists, then the real motion of a 
system with freely varying (within certain limits) parameters Q and g1 
must be such that the variation of the integral 

iI 

6 (T**+U)Ndt=O 
s 
0 

vanishes under the condition that 

11 

%I = s N dt 

be constant. 0 

Here T+*(q, ql, q', ql') is the reduced expression for the kinetic 
energy. 

Chaplygin’s theorem has a dual meaning. Firstly, it establishes that 
the real motions of certain nonholonomic systems in space of the free 
coordinates q, q1 satisfy certain definite extremal conditions. Secondly, 
it permits the use of the Hamilton-Jacobi method of integration for the 
determination of these real motions, 

Below, an attempt will be made to extend Chaplygin’s results to a 
broader class of nonholonomic systems and to the space of all the 
Lagrange variables. 

I.. Suppose that we are given some material system. Let ql, . . . . g, be 

its Lagrange coordinates restricted by the nonholonomic equations of 

constraint 

n--m 

q3 = $3’ + x qhI+rqm+P + ap = 0 (f3=1,...,m) w 
C=l 

whose coefficients nt r’ 
points ql, . . . . 

7% 
.% depend on all the coordinates of the 

g, and the tjme t . 

The motion 4, = q,(t) (s = 1, . . . , n) of a material system is said to 

be kinematically admissible if the functions qS(t) satisfy identically 

the equations of constraint. 

Let 

(14 

Here bks, cs and P are some functions of the coordinates and time. 

Iet us find out for what coefficients of the function F, and for what 

boundary conditions, the set of the real motions of the system coincides 
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with the set of extremals of the conditional variational problem 
11 . 

8 Pdt=O when up=0 
s 

(1.3) 
t. 

2. We will suppose that the real motions of the system are determined 
by the variational problem (1.3). Now we must specify what necessary con- 
ditions must be satisfied in this case by the boundary conditions of the 
problem (1.3). 

Let $( t) be the Iagrange multipliers for the problem (1.3). L3y sepa- 
rating in its equation the Euler terms with qk” (k = 1, . . . . n), we 
obtain 

n 

k=l 

& qk" + 2 $i$ qk' + 
k-1 qs qk 

Here 

+ 5 w%s + 5 hp (uh - 2) = 0 (s=l, . ..) n) (24 
p=1 p=1 

ups = 0 

1 

1 

%m+r 

The equations of constraint yield 

R la 

if s=s 
if m>s+B 
if s=m+r 

2 apkqK” + 2 a’fikq’k + up = 0 (p= 1,. . 

k=l k=l 

We exclude the singular case, and assume that 

d _ 11 aaFk / @,’ ‘qk’ 11 - 
1 apkiI 

p 4 (2.2) 

(2.3) 

Then we obtain from (2.1) and (2.2) the unique values 

qk” = + = Qr (9, q’, t, A)- @=I, . . ..?a) (2.4) 

&I+&?, Q’, t, A) (p = 1,. . . , m) 

Here Ak and An+p are obtained from the determinant A by replacing 
the elements of the kth, or the (n + p)th columns by the free terms of 
Equations (2.1) and (2.2). 

In mechanics, one has the “generalized principle of inertia” (in the 
terminology of ?oincark) : the accelerations of the points of a mechanical 
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system can be uniquely determined at any instant of time if one knows the 

forces, the constraints, the coordinates, and the velocities of the 
points at the given instant of time.* 

By hypothesis, the real motions of the system are determined by the 
variational problem (1.3). In the light of the above principle, let us 
consider Equation (2.4). The “generalized principle of inertia” requires 
that the multipliers 

9’ 
which enter into the function Qk, be determined 

completely by the values t, q, q’ (at the given instant), independently 
of the initial conditions. From the first m integrals of the equations 
for the extremals, it is possible to find 9 as a function of t, q, q’, 
and of m constants k of integration. The constants k 
means of the boundarT conditions of the problem, ‘c 

are determined by 
and hey will, therefore, 

differ for different extremals. 

‘Ihe “generalized principle of inertia” can be satisfied in two cases 

only: 

First, if the multipliers $ 
extremals. The the values 

have the same constant values ky on all 

b3 = 43 (t, 47 Q’) 

are determined by the first integrals of the equations of the extremals. 

Second, if for all kinematically admissible motions** the multipliers 
$ do not enter into the functions Qk. ‘Ihis will happen only if the 
equations of constraint are integrable [2]. 

Ihus , in order that the real motions of a nonholonomic system may be 
described by the variational problem (1.3), its boundary conditions must 
satisfy special requirements. ‘Ihey must be such that the multipliers 
determined by means of the first integrals of the equations of the 

$1 

extremals, have the same constants ky of integration on all extremals. 

We note, for example, that the boundary conditions of Hamilton’s 
principle do not satisfy this condition. 

let us show under what boundary conditions of the variational prob- 
lems (1.3) the indicated necessary condition is satisfied. 

* This implies, in particular, that condition (2.3) is satisfied. 

l * Since the real motions are assumed to be unknown, all assertions are 
formulated for arbitrary kinematically admissible motions. 
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Lt us consider a material system in 
and the equation of constraint (1.1) do 

41, ‘es, qm. 

Chap lygin 293 

which the function of Lagrange, 
not depend on the coordinates 

We will put the same requirement on the function F defined 

‘Ihen Euler’s equation (2.1) will have m “cyclic integrals” 

a 
dq,’ (~=l,....m) 

by (1.2). 

(2.5) 

which, in view of (1.2) and (1.3), can be rewritten in the form 

; Lq,’ + c, + A, = k, 
S==I 

(2.6) 

Let us select the following boundary condition of the variational 

problem ( 1.3) 

Qr (&I) = QSO? Qm+r (tl) = %n+r, 1 (S=I ,..., n; r=l,..., n-mm) (2.7) 

for arbitrary coordinates q p tp = 1, . . . . m) of the finite point M,. ‘Ihen 

the next conditions of transversality 

[+(F+; bwp)] =O (T=I,...,~) 
P=l MI 

(2.8) 

must be satisfied at all finite points M, of the extremals. ‘Ihe condi- 
tions mentioned yield definite values for the arbitrary constants k 
from (2.5), namely, ky = 0. Finally, we have 

Y 

h, = - i bsqs’ - cy (r=I,...,m) (2.9) 

s=1 

along all extremals. 

Let us now consider a different class of mechanical systems. Suppose 
that the Lagrange coordinates of a system are restricted by one nonholo- 
nomic equation of constraint 

n-1 

0 = q1'f 2 q+rq1+r'+ a = 0 

r=1 

(a# 0) (2.10) 

I.et us assume that the Lagrange functions of the system, and of the 
equation of constraint do not depend on the time t. We make the same 
assumption for the function F. Then Euler’s equations of the problem will 
have a quadratic first integral 

(2.11) 
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Iet us leave free the upper limit of the integral (1.3) but keep fixed 

the coordinates of the boundary points 

!?6ctO) = qS0, qs(t) = 461 

For the chosen boundary conditions at 

following condition of transversality 

I- n Dl7 

(s= 1, . . ..n) (2.12) 

the finite point M,, we have the 

-I 

lF -2 -& 46’ + haJ = 0 
S==l s Ml 

(2.13) 

which yields a definite value for the arbitrary constant k of (2.11), 
namely, k = 0. Finally, we find that along all extremals 

(2.14) 

Let us now substitute (2.9) or (2.14) into the first equations (2.4). 

We then obtain a system of the form 

q; = RI, (q, q’, t> (k=l,..., n) (2.15) 

where the R, are some functions. It is obvious that the substituted 

values 
hp' 

which were determined by means of the first integrals of 

Euler's equations, will reduce the second equations (2.4) to identities. 

In Equations (2.15), the variables enter through the coefficients of the 

function F defined by (1.2). 

3. By hypothesis, the set of extremals, the solutions of Equations 

i2.15), coincides with the set of real motions, the solutions of the 

given equations of motion 

qk” = @)k(q, q’, t) (k=l,...,n) (3-l) 

It is obvious that for this to be true it is necessary and sufficient 

that the functions ak and R, must coincide because of the equations of 

constraint.* The requirement of the "equivalence of Equations (2.15) and 

(3.1)", imposes certain conditions on the coefficients of the function F 
(1.2). 

Let us write down the condition of the equivalence of equations. We 

will denote by 

Rko, @iot Rh..m+r, Ok, m+r, Rk, mj-r, m+~, @k, nz+r, rn~_~, Rk, m+r, m+p, m+? 

@=I,..., n; r, p, z‘= 1, . . . , n -m) 

l See last footnote. 
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the coefficients of the terms of the zeroth, first, second, and third 

orders relative to the independent velocities, in the functions R, and ak 

after we have eliminated from them the dependent velocities qP’ with the 

aid of the equations of constraint. 

‘Ihe conditions of equivalence are 

& = Q)kO, R k, m+r = @k, m+r 9 Rk, m+t, m+p = Q)k, m+r, m+p 

(k = 1,. . . , n; r, p = 1,. . . , n-m) (3.2) 

Since R, and Ok, for the first class systems, do not involve terms of 

the third order in the velocities, the equations terminate with them. For 

the second class of systems with the multiplier A given by (2.141, one 

must consider also the equations 

Rk, l+r, I+P. l+t = 0 (k = 1,. . . , n; r, p, ‘c = 1, . . . , n - 1) (3.3) 

We note that for the equivalence of the equations for all k = l,...,n, 

it is sufficient to have them equivalent for k = tn + 1, . . . . n. Indeed, 

suppose that the functions R,+ r and QII + r (r = 1, . . . , n - m) coincide 

in view of the equations of constraint. Substituting these functions into 

the equations of constraint, we establish the equality of the remaining 

functions Rp and OP (a = 1, . . . . ml. 

It is for this reason that in the sequel, we shall mean by the term 

“equations of equivalence” the last equations of (3.2) and (3.3) with 

k=mtl, . . . . n. 

Reuark. Sometimes it is possible to introduce into the coefficients 

of the function F, such constants that some of the terms of the equations 

Rk - ‘k = 0 vanish in view of the first integrals of the equations of 

motion. This simplifies the equations of equivalence. A similar method 

will be‘used in Section 4. 

Let us first consider the first class of nonholonomic systems. 

Equations (3.2) are first order, linear, nonhomogeneous, partial 

differential equations in the unknown functions bsk, cg and P of the co- 

ordinates q, + 1, . . . , qn and time t. These functions are the coefficients 

of the function 

F = + 5 bsh.q;qk' + i c8qB) + P 
8. !iGl s=1 

We thus obtain the following theorem. 

heorem 3.1. Suppose that we are given a material system with 
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nonholonomic constraints (1.1) that are independent of the cyclic co- 
ordinates q (p = 1, . . . , 

B 
ml, and suppose that there exists for it a 

solution 0 the equations of equivalence (3.2). ‘Iben every real motion 
in the class of all kinematically admissible motions of this system which 
satisfy the boundary conditions 

4s (to) = Qso, Qm+r ltl) = Qmfr. 1 (.s=i,..., n; r=l,..,, n-rn) 

is such that 
t1 

8 F&=0 
s 
(0 

‘Ibus, we see that a necessary and sufficient condition, for the 
existence of the variational problem (1.3) for the equations of motion 
of a nonholonomic system, is the existence of a solution of the equations 
of equivalence. It is important to note that for the construction of the 
variational problem it is sufficient to know some particular solution of 
these equations. 

‘Ihe ‘lbeorem 3.1 asserts that the real motions of nonholonomic systems 
can possess in the space of all coordinates {q,) a definite extremal pro- 
perty among all kinematically admissible motions. Furthermore, the 
theorem shows for what particular variational problem the real motions 
of the system serve as extremals. 

We note that the extremals of the variational problem that describes 
the motion of a nonholonomic system in the space of all coordinates {q,), 
do not form a field. 

4. In the case when the equations of equivalence admit a particular 
solution bpk = bkp = cp = 0 (p = 1, . . . , m; k = 1, . . . , n), the function 
F (1.2) depends only on the independent variables q:+ 1, . . . . q,. To this 
function F there corresponds the variational problem which describes the 
motion of a nonholonomic system in the space {q,+ ). If one knows this 
problem, one can use, for the solution of the last n - m equations of 
motion of the nonholonomic system, all methods of integration known for 
holonomic systems; in particular, the Hamilton-Jacobi method. The change 
of the coordinates ql, . . . . q, of the system is then found by quadratures 
of the equations of constraint. 

This case generalizes Chaplygin’s theorem mentioned in the intro- 
duction. Iet us alter the formulation of this theorem. We will use the 
notation given in the introduction. The variational problem of Chaplygin 
can be classified with the isoperimetric problems on the extremum of the 
integral 
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11 

s (T**+ U)Ndt 

t. 

under the condition 
t1 

x1 = Ndt= const 
s 

297 

(44 

(4.2) 
t, 

Here P*(q, ql, q’, ql’) is the reduced expression for the kinetic 
energy after the exclusion of the dependent velocities. We select the 
constant TV in the condition (4.2) so that Euler’s equations, for the 
isoperimetric problem with the function N(q, ql) satisfying condition 
(0.1) for the reducing multiplier 

dT** aN NS--- aT** aN 
w 3 + y3g= 0 (4.3) 

may coincide with Chaplygin’s equations of motion 

d aT** aT** au aT** au ------ 
dt aq* aq a4 

= qlfS, _$ F - - - - = - 
aql aql 

q's (4.4) 

Let us write out Euler’s equations of the isoperimetric problem (4.1) 

when CI = const is Lagrange’s multiplier of the dondition (4.2), 

(4.5) 
d aT** aT** au 
dt-q- --ap--= aq 

~~(T**tU,+p)-a~~(a~q’ +$ ql’) 

d aT+* aT** au __-_ --++*+~+p) 
dt aqi aq1 aql 

Comparing Equations (4.4) and (4.51, we obtain 

Equations (4.6) go over into 

ql’[NS ’ ar*‘~_~~]+a~(T**_U_-)=O 
-I- w dql ad1 aq (4.7) 

- q~t[NS+a~a~-a~~;]+~(T**-U-p)=~ 

In view of the condition (4.31, and N = const, we obtain the equation 
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p&“**-U 

Let us consider the solution of the equations of motion (4.4) which 

passes through the arbitrarily given points M,(q', qIo) and M,(g', ql'). 

For this real motion of systems investigated by Chaplygin, the inte- 

gral of the kinetic energy T+* - U = h is valid. Let us set the multi- 

plier IA = h. According to (4.71, the solution of the equations of motion 

(4.4) serves also as a solution of Euler's equation (4.5). 'Ibis solution 

is an extremal, and depends on the multiplier ~1 = h. Substituting the 

extremal into the condition (4.2), we obtain, finally, the sought con- 

stant 71. 

Since the extremal, and the real motion that pass through the points 

M,, and M, are unique, the real motion must coincide with the extremal, 

and since the points M,,(qO, qlo), M,(q’, ql’) are arbitrary, the set of 

real motions of the nonholonomic system coincides with the set of 

extremals of the isoperimetric problem (4.1). 

'Ibis isoperimetric problem can be replaced by the problem on the un- 

conditional extremum of the integral 

11 

I ” F dt, F=(T”*+U+h)N (4.8) 

Here, H is the total energy of the real motion. It follows from what 

has been said that the conditions for the equivalence of Chaplygin's 

equations (4.4) and Euler's equations of the problem on the extremum of 

the integral (4.81, can be reduced to Chaplygin's condition (4.3) for 

the reducing multiplier N. 

'Ibe results of Chaplygin can thus be obtained by the method of the 

equations of equivalence of Section 3; they are valid for conservative 

systems, and for those cases when the equations of equivalence admit a 

function F (4.8) which does not depend on the velocities qp' (p = 1, 
. . . ) m), and has the special structure F = (r* + U + h)N. 

Remark. The final equations for equivalence differ from Chaplygin’s 

equations for the function N in so far as that the former ones follow 

from the condition (4.3) when it is satisfied identically by the velo- 

cities q’, ql’, but not by impulses, as is the case for Chaplygin’s 

equations. This difference removes the restrictions on the kinetic energy 

and on the constraints, which have to be imposed in Chaplygin’s method 

for more than two freeecoordinates. This fact was pointed out by 
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M. I. Efiaov. l 

5. Let us now consider the second class of nonholonomic systems. 
Suppose that the Lagrange coordinates of the system are subject to only 
one equation of constraint 

n-l 

Co = q1' + 2 al+&+,’ + = = Ov a#0 (5.1) 
r=1 

while Lagrange’s function of the system, and the equation of constraint 

are independent of time. When, as was shown in Section 3, one has to 
supplement the equations of equivalence (3.2) by the equations of eclui- 
valence (3.3) 

R k. l+r.l+P,l++ = 
0 (k=l,. . ., n; r, p, z = 1,. . ., n- 1) (5.2) 

We will prove that for the identical satisfaction of Equations (5.2). 
it is necessary and sufficient that the equation 

n-l 

6q1+ 2 a,+,&?,+, = 0 (5.3) 
r=1 

which determines the “possible displacements” of the system, be holonomic. 

Let us now rewrite the function RR in terms of the determinants h, and 
n (Section 2). Using the previous notation, we obtain 

*k,l+r,l+~,l+~ = 0 (5.4) 

Rere A k,l+ r,l+p 1 +T is obtained from the determinant A by replacing 
the elements of the bth column by the coefficients of the third order 

terms in 9; + rg; + 9; + v. 
tions A # 0. and ( g 

It is easy to show [21 that under the condi- 
.4), this column is proportional to the last column of 

the determinant A, which consists of the coefficients ag of the equation 
of constraint. We note that the terms of the third order enter only into 
the products 

h ( a;- e) (s=l,..., n) 

The conditions for the proportionality of the columns is, therefore 

(5.5) 

l Efimov, M.I., On the equations of Chaplygin for nonholonomic systems 
and the method of a reducing multiplier. Dissertation. Institute of 
Mechanics, Akad. Nauk SSSR. 1953. 
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The coefficients of proportionality kl +r are included in the bsk be- 
cause of Ak (2.14). From the first (s = 1) Equation (5.5) we obtain the 
coefficient k, + r = - 20~ + ,./a,,, and substituting it in the remaining 
(s = 1 + p, p = 1, . . . . n - 1) Equations (5.5). we obtain the equations 

au l-t? 
aa 

ISP 
aa 

l+P 
aa 

1+r 
-al+P- -a --- = %l 891 l+r + a91+, @ 

0 (r. p=l,..., n--l) 
1+p 

which imply that Equation (5.3) is holononic. 

The necessity is thus established. BY carrying out the arguments in 
the reverse order, one can show that the condition is sufficient. Thus 
we obtain a theorem analogous to Theorem 3.1. 

Theorem 5.1. Let a conservative system with a nonholonomic constraint 
(5.1) be given. Suppose that there exists for it a solution of the equa- 
tion of equivalence (3.2). and suppose that Equation (5.2), which deter- 
mines the “possible displacements” of the system, is holonomic. Then 
every real motion, in the class of all kinematically admissible motions 
of the system which satisfy the boundary conditions 

Q* (4l) = QsO’ Q, (0 = 4,1 (s=l,...,n) 

will satisfy the equation 

where the upper limit of the integral is a free variable. 

6. Suppose that the state of holonomic systems is determined by the 

coordinates ql, . . . , q, subject to the auxiliary integrable constraints 

(1.1). Suppose that these holonomic systems have a unique Lagrange func- 

tion (constructed without taking into account the auxiliary constraints 

9 = O), and different equations 

“R 

= 0. Then the motions of these 

systems are described by one and t e same variational problem, for 

example, by Hamilton’s principle 

6’Ldt=O 
s 

when (+ = 0 

f, 
On the other hand, for different arbitrary differential equations of 

constraint (l.l), the integral functions F of the problem (1.3) whjch are 
formed by the solutions of the equations of equivalence, are generally 

distinct. 

We shall say that the integrand F of the conditional variational 

problem does not depend on the equations of constraint if the correspond- 
ing equations of equivalence do not depend on the coefficients 9,R+rj”f3 
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of the equation of constraint, and on their derivatives 

3% m+r 
-----, 

%J 
% G 

In other words, the equations of constraint imply that the following 
equations are satisfied 

aopa + (Rk-Q)k)=@ &-(fik-Q)k) = 0 (6-i) 
.m r 

@?k-@k) =o, ,j$ (RI, - (Dk) = 0, E = aug,qm+r , 
s 

(k, s=l, . ..) n; p=1,..., nz;‘r=l,..., n-m) (6.2) 

Theorem 6.1. In order that the integrand of the variational problem 
for a material system may be independent of the equations of constraint, 
it is necessary and sufficient that these equations be holonomic. 

Proof. 'Ihe sufficiency is established by the fact that Hamilton’s 
principle is valid for holonomic systems. 

Let us prove the necessity. Suppose that the function F does not de- 
pend on the equations of constraint, and, hence, that Equations (6.1) and 
(6.2) are satisfied. let us turn our attention to Eouations (6.2). The 
functions ok do not depend on e = 
equations of constraint imply that 

aRk 

3g= 0, 

In place of the functions R, in 

take the functions Qb of Section 2 

aRk 

d’l= 0 

Equations (6.3) one can always first 
(the functions R, are obtained from 

the functions Qk through the exclusion of the multipliers 
have in place of (6.3) the equations 

$1. We thus 

aQk aQk 
z= 0, -q= 0 (6.4) 

which are satisfied because of the equations of constraint. ‘The deriva- 

tives 5 = sop, I + ,/aq,, T 
through the products 

= aa#3qs enter into the functions Qk only 

Therefore, Equations (6.4) and the equations 

3% 
ahp= 

0 (k=i ,..., n; B=i, . . . . m) (6.5) 
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will arise and vanish simultaneously. In accordance with [21, it follows 
from this that the equations of constraint are holonomic. Hereby, Equa- 
tions (6.1) will be satisfied identically. 

Remark. The theorem shows that the variational principles, which are 
known for holonomic systems, are not valid for nonholonomic systems. 

7. Exarples. a) The motion of an automobile under inertia [31. The 
position of the automobile can be determined by four coordinates 

Ql = x9 qz = Y, qa = a, q4- fl 

where x and y are the coordinates of the center of inertia of the auto- 
mobile on a horizontal plane of the motion; a is the angle formed by its 
longitudinal axis with the x-axis; 8 is the angle between the longitudinal 
axis of the automobile and the straight line which connects the middle of 
the front axis of the automobile with its center of rotation. The angle 
8 characterizes the turn of the steering wheel. 

Let the angle of turning of the steering wheel be given: 8 = 8(t). 
Furthermore, we have two nonholonomic equations of constraints (when 

0 # 9) 

x’- (loot 8 co9 a-4 sin o)a’ = --aI a’ 
y’= (Icot Cl sin a + a cos a) a’ = -- ax9 a’ (7.1) 

Aere 1 is the length of the automobile, a is the distance from the 
center of inertia to the rear axis of the automobile. Neglecting the mass 
of the wheels, we have the following expression for the kinetic energy 
of the automobile 

T = f (dp + y’*) + f Zala (I is the central moment of inertia) 

The equations of motion of the automobile that moves under inertia 
have the form* 

Here, 

mx”=-plsina--sin(a+9) 

my” = PI cos a + ps co8 (u + 6) 

la” = - pla + pa (I - a) cos 0 

(7.2) 

pl=rn cotfil 
[ 

z (al - p2) a’8’ 
(1-aa)a’a+pasina~+~8C0~a~ 1 

Z+maa 
pa = - 

, m 

l Novoselov, V. 6.. Some questions of nonholonomic mechanics. Disserta- 
tion. MSIJ (Moscow State University), 1958. 
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m 

[ 

pala’O’ 
Pa= sin aa’a + pa sin2 Q + 1% COST e 1 

Chaplygin’s theorem is applicable to the problem under consideration 
because the system is not conservative. For the construction of the 
equations of equivalence one uses only the last equation. Here, 

u&=0, QsS= 
la cot 8 

pa sina 8 + la cosa 0 ’ &=O 

We will look for the function F in the form 

F = + (bux’a + baay” + basal2 + 2blpx’y’ + 2bnx’a’ + 2bay’a’) 

with coefficients that depend only on 8. Because of (2.9), 

I.2 = - blax’ - baay’ - bd’ 

Solving the equations of the extremals for a’: we obtain 

Ra=O, 

I R==;ir % (bls - alsbll - asbn)+ % (bzs - aaabaa - a&a)] 

where 

A = O,& + Qaa + has + 2awdla - 2aubls - 2aBbm 

We have two equations of equivalence 

1 dh 
Rsm=O--=- 

la cot 0 
A d0 pa sina 9 + la c0.Q 0 (7.3) 

The first equation of (7.3) will be satisfied identically when bII = 

bz2, b12 = b,, = bz3 = 0. Solving, next, the second equation of (‘7.3), 

we find 

(7.4) 

Se letting b 33 = b,, (P2 - 02), we obtain bll = I/J (p2 + l2 cot28) and 

F=f m 

v pa + PCOG fJ ( x’a + Yc3 + k ala ) 
Furthermore, by solving Euler’s equation for the variational 

with the function F (7.5), and with the equation (7. l), for x”, 
and substituting 

(7.5) 

problem 
y”, a’: 
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we obtain the accelerations of the real motion. 

If one considers the problem in the space a, then 

bll = baa = 0, A = bs = m I/p” + lacer 2 0, F=~Jfp2+l&t?@x’~ 

b) Suppose that the position of the system is determined by two 
Lagrange coordinates restricted by nonholonomic equations of constraints 

0 = 91’ - qg’ - (91 + 42) = 0, and suppose that the kinetic energy of the 
system is T = (qi2 + q2 ‘2), while the force function .!I = 0. Then the 
equation of motion of Routh will yield 

91” = $ (91’ + 42% 92" = - $ (q1'+ qa') 

We are looking for a function F of the form 

F = ; (bllql’a + 2b12ql’qs’ + bazqa”) 

Then the multiplier ?I = - F/(ql + q2), in view of Equation (2,14). It 
is easy to give a particular solution of the corresponding equations of 

equivalence: bsk = (ql + q2)csk, where csk are constants connected by 
the relation cl1 - 2c12 + c22 = 0 (which implies that cl2 # 0, cl1 # Cam). 
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