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In the article "On the Theory of Motion of a Nonholonomic System. Theorem
on a Reducing Multiplier", Chaplygin [1] promulgated a certain integral
variational principle for a class of nonholonomic systems.

Let §, 1, ¢, g¢; be the Lagrange coordinates of a material system which
satisfy two nonholonomic equations

Eo=ag 4 aqt’, N =bq’ + by’

whose coefficients a, @, b, b, do not depend on €, 1 and time t. We
assume also that the kinetic energy 7T, and the force function U are in-
dependent of §, n and ¢t.

Through the introduction of a new independent variable T by means of
the equation Ndt = d71, Chaplygin selected a function N(g, g,) (the so-
called "reducing multiplier") in such a way thai the equations of motion
of a system in the space g, 9 T would take on the canonical form. For
this, the function N had to satisfy, identically in the impulses
p = OT*/dy, p, = 0T*/dq,, the equation

oT* 1 N  oT* 1 ON

NS = N3¢ o7 Noq (0.1)
Here
o godn (e dmy am o
1= @ N7 T At \dq1  Ig an’ (6q1 69)

and T*(q, q;, ¢, ¢;) is the reduced expression for the kinetic energy.
For such a function N in the space g, g, T, Hamilton’s principle is
valid:
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Returning now to the time ¢, Chaplygin obtains the theorem: if the
reducing multiplier N given by (0.1) exists, then the real motion of a
system with freely varying (within certain limits) parameters ¢ and 93
must be such that the variation of the integral

4
68 (T** + U)Ndt =0
0
vanishes under the coandition that

t
TI:S Ndt
0

be constant.

Here T**(q, q;, ¢', q;') is the reduced expression for the kinetic
energy.

Chaplygin’s theorem has a dual meaning. Firstly, it establishes that
the real motions of certain nonholonomic systems in space of the free
coordinates gq, q; satisfy certain definite extremal conditions. Secondly,
it permits the use of the Hamilton-Jacobi method of integration for the
determination of these real motions,

Below, an attempt will be made to extend Chaplygin’s results to a
broader class of nonholonomic systems and to the space of all the
Lagrange variables.

1. Suppose that we are given some material system. let q;, ..., q, be
its Lagrange coordinates restricted by the nonholonomic equations of
constraint

n—m
@p=gg' -+ D) Gpmprgmir + =0 @=1,...,m (1.1)
r=1
whose coefficients W ot depend on all the coordinates of the
points g,, ..., g, and the time t.

The motion g = ¢ (t) (s =1, ..., n) of a material system is said to
be kinematically admssible if the functions ¢ (t) satisfy identically
the equations of constraint.

Let
F=g 3 bag/ad + 3 ea’ + P (1.2)
8, k=1

s=1

Here bks' c_ and P are some functions of the coordinates and time.
Let us find out for what coefficients of the function F, and for what
boundary conditions, the set of the real motions of the system coincides
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with the set of extremals of the conditional variational problem
1y
65th=0 when @y =0 (1.3)

to

2. We will suppose that the real motions of the system are determined
by the variational problem (1.3). Now we must specify what necessary con-
ditions must be satisfied in this case by the boundary conditions of the
problem (1.3).

Let Ay(t) be the lagrange multipliers for the problem (1.3). By sepa-
rating in its equation the Euler terms with q,” (k =1, ..., n), we
obtain

n n
o*F ” 0*F ’ atF oF
,‘Z aqs/ aqk/ gk + ,‘El aqs/ aqk gk + aqsr at 393 +
p=1 =

- ’ = ’ amﬁ
+2’V9aﬂs+ zkﬁ(aes—'gl}:>=0 s=1,...,n) 2.1)
=1 B‘:l
Here

1 if s=§
aﬁs={0 if m>s3p
%, mir if S=Mm T
The equations of constraint yield
n ) n
3 amgi” + D) d'mg’k+ap’ =0 B=1,...,m (2.2)
k=1 k=1

We exclude the singular case, and assume that

A= 19°F, 189, 0, I| | ag, |

I agll ol +0 (2.3)

Then we obtain from (2.1) and (2.2) the unique values
A , _
o =3=0%@d,tN  G=t..n (2.4)

A /
7\19"; ‘XHZ =An+ﬁ(q,Q»ty7~) B=1...,m

Here A, and A , 5 are obtained from the determinant A by replacing
the elements of the kth, or the (n + p)th colums by the free terms of
Equations (2.1) and (2.2).

In mechanics, one has the "generalized principle of inertia" (in the
terminology of Poincaré): the accelerations of the points of a mechanical
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system can be uniquely determined at any instant of time 1f one knows the
forces, the constraints, the coordinates, and the velocities of the
points at the given instant of time.*

By hypothesis, the real motions of the system are determined by the
variational problem (1.3). In the light of the above principle, let us
consider Equation (2.4). The "generalized principle of inertia" requires
that the multipliers Az, which enter into the function Q,, be determined
completely by the values t, g, ¢’ (at the given instant), independently
of the initial conditions. From the first m integrals of the equations
for the extremals, it is possible to find as a function of t, q, g¢°,
and of m constants k_ of integration. The constants k_ are determined by
means of the boundary conditions of the problem, and zhey will, therefore,
differ for different extremals.

The "generalized principle of inertia" can be satisfied in two cases
only:

First, if the multipliers RB have the same constant values kY on all
extremals. The the values

M=hs(t, 9, q)
are determined by the first integrals of the equations of the extremals.

Second, if for all kinematically admissible motions** the multipliers
do not enter into the functions Q,. This will happen only if the
equations of constraint are integrable [2].

Thus, in order that the real motions of a nonholonomic system may be
described by the variational problem (1.3), its boundary conditions must
satisfy special requirements. They must be such that the multipliers Aﬂ'
determined by means of the first integrals of the equations of the
extremals, have the same constants kY of integration on all extremals,

We note, for example, that the boundary conditions of Hamilton’s
principle do not satisfy this condition.

Let us show under what boundary conditions of the variational prob-
lems (1.3) the indicated necessary condition is satisfied.

* This implies, in particular, that condition (2.3) is satisfied.

** Since the real motions are assumed to be unknown, all assertions are
formulated for arbitrary kinematically admissible motions.
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Let us consider a material system in which the function of Lagrange,
and the equation of constraint (1.1) do not depend on the coordinates
95 -+ Q-

We will put the same requirement on the function F defined by (1.2).

Then Euler's equation (2.1) will have m "cyclic integrals"

) - _ _
3E;7<F+ Elxamﬁ)__m W=t,....m (2.5)
which, in view of (1.2) and (1.3), can be rewritten in the form
E bysqs' oy + Ay = ky (2.6)
s=1

Let us select the following boundary condition of the variational
problem (1.3)

gs (o) = Gs0s gmtr (81) = Gmir, 1 (s=1,...,n5r=1,...,n—m) (2.7)

for arbitrary coordinates gy (B =1, ..., m) of the finite point M;. Then
the next conditions of transversality
a m
|3 (F + Bglxamp)]M =0 =t...m (2:8)

must be satisfied at all finite points M, of the extremals. The condi-
tions mentioned yield definite values for the arbitrary constants k
from (2.5), namely, kY 0. Finally, we have

Ay=— Z bysgs’ — v r=1...,m) (2.9)

8=1
along all extremals.

Let us now consider a different class of mechanical systems. Suppose
that the Lagrange coordinates of a system are restricted by one nonholo-
nomic equation of constraint

n—1
o=gq'"+> @ity +a=0 (a==0) (2.10)
r=1

Let us assume that the Lagrange functions of the system, and of the
equation of constraint do not depend on the time t. We make the same
assumption for the function F. Then Euler’s equations of the problem will
have a quadratic first integral

n

F o tha=k (2.11)

8=1
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Let us leave free the upper limit of the integral (1.3) but keep fixed
the coordinates of the boundary points

gs(to) = Gso»  qs(t) = a1 (s=1,...,n) (2.12)

For the chosen boundary conditions at the finite point M., we have the
following condition of transversality

[F—Zn gqp gs - xa] =0 (2.13)

=1 1

which yields a definite value for the arbitrary constant k of (2.11),
namely, & = 0. Finally, we find that along all extremals

AZ%(Z %q;_p) (@ 0) (2.14)
8=1

Let us now substitute (2.9) or (2.14) into the first equations (2.4).
We then obtain a system of the form

@'=Ri(q, ¢ 1)  (=1,...,n (2.15)

where the R, are some functions. It is obvious that the substituted
values Ay, which were determined by means of the first integrals of
Euler’s equations, will reduce the second equations (2.4) to identities.
In Equations (2.15), the variables enter through the coefficients of the
function F defined by (1.2).

3. By hypothesis, the set of extremals, the solutions of Equations
(2.15), coincides with the set of real motions, the solutions of the
given equations of motion

qx" = Dy (q, g, 1) (k=1,...,n) (31)

It is obvious that for this to be true it is necessary and sufficient
that the functions ®, and R, must coincide because of the equations of
constraint.* The requirement of the "equivalence of Equations (2.15) and
(3.1)", imposes certain conditions on the coefficients of the function F

(1.2).
Let us write down the condition of the equivalence of equations. We
will denote by

Rko: (Dko, Rk.’m-i-rr q)k, m-ry Rk, m-r, mi-cr (Dk, m-r, mips Rk, m+-r, m+p, mtv
k=1,...,n;r p,T=1,...,n—m)

* See last footnote.
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the coefficients of the terms of the zeroth, first, second, and third
orders relative to the independent velocities, in the functions R, and 0,
after we have eliminated from them the dependent velocities qﬁ' with the
aid of the equations of constraint.

The conditions of equivalence are

Rko = (Dko, Rk. mir = (Dk, m+ry Rk, m—+4r, mip = Qk, m4r, m4-p
k=1,...,nr,p=1,...,n—m) (3,2)

Since Rk and @,, for the first class systems, do not involve terms of
the third order in the velocities, the equations terminate with them. For
the second class of systems with the multiplier A given by (2.14), one
must consider also the equations

Ry, 1tr, 140, 14: =0 (k=1,...,nrpt=1,...,n—1) (3.3)
We note that for the équivalence of the equations for all kR =1,...,n,
it is sufficient to have them equivalent for k =m + 1, ..., n. Indeed,

suppose that the functions R-i-r and A (r=1, ..., n - n) coincide
in view of the equations of constraint. Substituting these functions into
the equations of constraint, we establish the equality of the remaining
functions Rﬂ and 05 ®=1, ..., m).

It is for this reason that in the sequel, we shall mean by the term
"equations of equivalence" the last equations of (3.2) and (3.3) with
k=m+1, ..., n.

Remark. Sometimes it is possible to introduce into the coefficients
of the function F, such constants that some of the terms of the equations
Rk - °k = 0 vanish in view of the first integrals of the equations of
motion. This simplifies the equations of equivalence. A similar method
will be used in Section 4.

Let us first consider the first class of nonholonomic systems.

Equations (3.2) are first order, linear, nonhomogeneous, partial
differential equations in the unknown functions b_,, ¢, and P of the co-
ordinates ¢ 4+,, --., q, and time t. These functions are the coefficients
of the function

1 n n
F = 5 bsts'Qk, + 2 Cs‘]s’ + p

8, k=1 8=1
We thus obtain the following theorem.

Theorem 3.1. Suppose that we are given a material system with
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nonholonomic constraints (1.1) that are independent of the cyclic co-
ordinates qq (B =1, ..., m), and suppose that there exists for it a
solution of the equations of equivalence (3.2). Then every real motion

in the class of all kinematically admissible motions of this system which
satisfy the boundary conditions

2s(to) = gsos  gmtr (t1) = gmir,1 s=4....mr=1,...,n—m)

is such that

Thus, we see that a necessary and sufficient condition, for the
existence of the variational problem (1.3) for the equations of motion
of a nonholonomic system, is the existence of a solution of the equations
of equivalence. It is important to note that for the construction of the
variational problem it is sufficient to know some particular solution of
these equations.

The Theorem 3.1 asserts that the real motions of nonholonomic systems
can possess in the space of all coordinates {qs} a definite extremal pro-
perty among all kinematically admissible motions. Furthermore, the
theorem shows for what particular variational problem the real motions
of the system serve as extremals.

We note that the extremals of the variational problem that describes
the motion of a nonholonomic system in the space of all coordinates {qs},
do not form a field.

4. In the case when the equations of equivalence admit a particular
solution bg, = bkﬁ =cg = 0@P=1, ..., m k=1, ..., n), the function
F (1.2) depends only on the independent variables g, .., ..., g,  To this
function F there corresponds the variational problem which describes the
motion of a nonholonomic system in the space {q.,fr}. If one knows this
problem, one can use, for the solution of the last n — m equations of
motion of the nonholonomic system, all methods of integration known for
holonomic systems; in particular, the Hamilton-Jacobi method. The change
of the coordinates g;, ..., g, of the system is then found by quadratures
of the equations of constraint.

This case generalizes Chaplygin’s theorem mentioned in the intro-
duction. Let us alter the formulation of this theorem. We will use the
notation given in the introduction. The variational problem of Chaplygin
can be classified with the isoperimetric problems on the extremum of the
integral
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t
S (T**4- U) N dt (4.1)
t
under the condition
1y
T, = SNd t= const (4.2)
to
Here T**(q, ¢,, 9", g,") is the reduced expression for the kinetic
energy after the exclusion of the dependent velocities. We select the
constant T; in the condition (4.2) so that Euler’s equations, for the
isoperimetric problem with the function N(g, gq,) satisfying condition
(0.1) for the reducing multiplier

aT** ON | aT**aN _ o (©.3)

NS ——— — e =
g’ 9q a¢ 9q

may coincide with Chaplygin’s equations of motion

d OT** oT** U , d OT** T ** ’
= T U _ _ g8 (44)

Let us write out Euler’s equations of the isoperimetric problem (4.1)
when p = const is lagrange’'s multiplier of the condition (4.2),

(4.5)
d_oT**  oT** au _ 1 oN £x . __9T** 1 (3N , oN ,
Ty " e g — N oag U Ut w)— S -ﬁ(gq—q +5q—191)
4 OT** _ aT* _ aU 4 9N . aT** 1 (AN , | N
at oq’ dqr 9¢1 N dq (T +U+M)——aQ1'TV—<Wq +341 Q1)
Comparing Equations (4.4) and (4.5), we obtain
NS AN TGN O oN g, N _
QI NS+ aq 6q' q + 6q1 aq/ (51 aq T aq (U—*'l"') 0 (46)

ON OT™* AN OT** aN N
— ’]VS P U L o giv ot "~ s oV #%__ 0LV U N\
9 T g oqr 1 3gr oqr ' T aq T oq U+w=0

Equations (4.6) go over into

’  OT** 0N  OT*ON7T | ON pax__ 7y =
N [NST " 3q1  0q- 0(1]+ oy (T U—p=0 (4.7)

TN 4 ST ON _STON T L ON e g
— 4 [NS + ¢’ oq oqy" 9q :' + oq (7 U—w=0

In view of the condition (4.3), and N = const, we obtain the equation
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Let us consider the solution of the equations of motion (4.4) which
passes through the arbitrarily given points M (¢°, ¢,°) and ¥,(q", ¢,").

For this real motion of systems investigated by Chaplygin, the inte-
gral of the kinetic energy T** —~ U = h is valid. Let us set the multi-
plier u = h. According to (4.7), the solution of the equations of motion
(4.4) serves also as a solution of Euler’s equation (4.5). This solution
is an extremal, and depends on the multiplier u = h. Substituting the
extremal into the condition (4.2), we obtain, finally, the sought con-
stant T,.

Since the extremal, and the real motion that pass through the points
M, and M, are unique, the real motion must coincide with the extremal,
and since the points My(q°, ¢,°), M,(q", q,") are arbitrary, the set of
real motions of the nonholonomic system coincides with the set of
extremals of the isoperimetric problem (4.1).

This isoperimetric problem can be replaced by the problem on the un-

conditional extremum of the integral
iy

Sth’ F=(T**4+U+h)N (4.8)
lo .

Here, H is the total energy of the real motion. It follows from what
has been said that the conditions for the equivalence of Chaplygin’s
equations (4.4) and Euler’s equations of the problem on the extremum of
the integral (4.8), can be reduced to Chaplygin’s condition (4.3) for
the reducing multiplier N.

The results of Chaplygin can thus be obtained by the method of the
equations of equivalence of Section 3; they are valid for conservative
systems, and for those cases when the equations of equivalence admit a
function F (4.8) which does not depend on the velocities qﬁ' p=1,
m), and has the special structure F = (T** + U + h)N.

M ]

Remark, The final equations for equivalence differ from Chaplygin’'s
equations for the function N in so far as that the former ones follow
from the condition (4.3) when it is satisfied identically by the velo-
cities ¢’, g¢;’, but not by impulses, as is the case for Chaplygin’'s
equations. This difference removes the restrictions on the kinetic energy
and on the constraints, which have to be imposed in Chaplygin’s method
for more than two freeecoordinates. This fact was pointed out by
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M.I. Efimov.*

5. Let us now consider the second class of nonholonomic systems.
Suppose that the Lagrange coordinates of the system are subject to only
one equation of constraint

n—1
o=g'+ Y a,q, te=0, a0 (5.4)
r=1
while Lagrange’s function of the system, and the equation of constraint
are independent of time. Then, as was shown in Section 3, one has to
supplement the equations of equivalence (3.2) by the equations of equi-
valence (3.3)

RKHNH%H4=O k=1,....,nr,p,t=1,..., n—1) (5.2)

We will prove that for the identical satisfaction of Equatiomns (5.2),
it is necessary and sufficient that the equation
n—1
S+ X 4y 80y, =0 (8.3)
r=1
which determines the "possible displacements®™ of the system, be holonomic.

Let us now rewrite the function Rk in terms of the determinants Ak and
A (section 2). Using the previous notation, we obtain

Ay, 147, 14p, 14 =0 (5.4)

Here Ak,1+'r,1+p,1-+1 is obtained from the determinant A by replacing
the elements of the kth column by the coefficients of the third order
terms in g; 4 .9 + 91-%1' It is easy to show [2] that under the condi-
tions A # 0, and (5.4), this column is proportional to the last column of
the determinant A, which consists of the coefficients a, of the equation
of constraint. We note that the terms of the third order enter only into
the products

o
A ( a;— EI—S—) (s=1,..., n)
The conditions for the proportionality of the columns is, therefore

aas aas 8al+r‘

T oq T og,, T Tag, = Ky pag (5.5)

Efimov, M.I., On the equations of Chaplygin for nonholonomic systems
and the method of a reducing multiplier. Dissertation. Institute of
Mechanics, Akad. Nauk SSSR, 1953.
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The coefficients of proportionality k1_+r are included in the bsk be-
cause of Ak (2.14). From the first (s = 1) Equation (5.5) we obtain the

coefficient k) 4 = - Ja;, /Oq;, and substituting it in the remaining
(s=1+p, p=1, ..., n—1) Equations (5.5), we obtain the equations
da da da oa
——lir—a — ]+pa 1+e ___i:() (r,p:1....,n-—1)
6q1 1+e Bql 14r aql_*_,. qu_p

which imply that Equation (5.3) is holonomic.

The necessity is thus established. By carrying out the arguments in
the reverse order, one can show that the condition is sufficient. Thus
we obtain a theorem analogous to Theorem 3.1.

Theorem 5.1. Let a conservative system with a nonholonomic constraint
(5.1) be given. Suppose that there exists for it a solution of the equa-
tion of equivalence (3.2), and suppose that Equation (5.2), which deter-
mines the "possible displacements" of the system, is holonomic. Then
every real motion, in the class of all kinematically admissible motions
of the system which satisfy the boundary conditions

g (£o) = gy q,(t) = 9 (s=1,...,n)

will satisfy the equation
t
GSth::
&
where the upper limit of the integral is a free variable.

6. Suppose that the state of holonomic systems is determined by the
coordinates g, ..., g, subject to the auxiliary integrable constraints
(1.1). Suppose that these holonomic systems have a unique Lagrange func-
tion (constructed without taking into account the auxiliary constraints

= 0), and different equations = 0. Then the motions of these
systems are described by one and tﬁe same variational problem, for
example, by Hamilton's principle

t
BXLdtzO when @ =10
fo

On the other hand, for different arbitrary differential equations of
constraint (1.1), the integral functions F of the problem (1.3) which are
formed by the solutions of the equations of equivalence, are generally
distinct.

We shall say that the integrand F of the conditional variational
problem does not depend on the equations of constraint if the correspond-
ing equations of equivalence do not depend on the coefficients 9B, wtr 98
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of the equation of constraint, and on their derivatives
a8, mir ?f@
dq, dq,

In other words, the equations of constraint imply that the following
equations are satisfied

0 )

dig oy B =0, G (Ri— D) =0 (6.1)
d ad aaB’m_H 60{;
5%(1?k——-q)k):= 0, gﬁ(}?k"“qu)zz 0, £ = — n= 5.
(k,s:l,_,,,n; B=1:---ym;"‘=1,...,n—m) (6.2)

Theorem 6.1. In order that the integrand of the variational problem
for a material system may be independent of the equations of constraint,
it is necessary and sufficient that these equations be holonomic.

Proof. The sufficiency is established by the fact that Hamilton’s
principle is valid for holonomic systems.

Let us prove the necessity. Suppose that the function F does not de-
pend on the equations of constraint, and, hence, that Equations (6.1) and
(6.2) are satisfied. Let us turn our attention to Equations (6.2). The
funct%ons 0, do not éepegd on § = aap‘ui.r/aqs, n= 3aB/3qs,Hence, the
equations of constraint imply that

oR,
k3

In place of the functions R, in Equations (6.3) one can always first
take the functions Q, of Section 2 (the functions R, are obtained from
the functions Q) through the exclusion of the multipliers lp). We thus
have in place of (6.3) the equations

{0 aQ,
which are satisfied because of the equations of constraint. The deriva-
tives § = Baﬁ wt /%9 0= aaﬁ/aqs enter into the functions Q, only
through the products

R,

=0, wn

=0 (6.3)

mn , am

Z 7"3 (aﬁs - 5q_ﬁ)
p=1 y
Therefore, Equations (6.4) and the equations

6Qk

‘9_7‘;’;0 (k=1,..,n; B=1,...,m) (6.5)
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will arise and vanish simultaneously. In accordance with [2], it follows
from this that the equations of constraint are holonomic. Hereby, Equa-
tions (6.1) will be satisfied identically.

Remark. The theorem shows that the variational principles, which are
known for holonomic systems, are not valid for nonholonomic systems.

7. Examples. a) The motion of an automobile under inertia [3]. The
position of the automobile can be determined by four coordinates

Qa=z =Y =0 gq=190

where x and y are the coordinates of the center of inertia of the auto-
mobile on a horizontal plane of the motion; o is the angle formed by its
longitudinal axis with the x-axis; © is the angle between the longitudinal
axis of the automobile and the straight line which connects the middle of
the front axis of the automobile with its center of rotation. The angle

€6 characterizes the turn of the steering wheel,

Let the angle of turning of the steering wheel be given: 6 = §(¢).
Furthermore, we have two nonholonomic equations of constraints (when
6 #0)

2= (lcot @ cos a—a sin ¥a’ = —a;53 o’
y'=(lcot 8 sin @ + a cosa) @’ = — ay3 a’ 1)

Here ! is the length of the automobile, a is the distance from the
center of inertia to the rear axis of the automobile. Neglecting the mass
of the wheels, we have the following expression for the kinetic energy
of the automobile

m 1
T=—5@+y)+5la? (I is the central moment of inertia)

The equations of motion of the automobile that moves under inertia
have the form*

mz” = — p; sin a — pg sin (@ 4- 9)
my" = |y cos o - ugcos (@ + §) (7.2)
Ia" = — a4 pg (I —a) cos §
Here,
1(al —p?) o'’ I 4 ma?
pd:mCme[(l—.a)am+p“si(n26—£l’cos’f)], =

* Novoselov, V.S., Some questions of nonholonomic mechanics. Disserta-
tion. MGU (Moscow State University), 1958.



On a problem of Chaplygin 303

Pa =

m pila’g’
sin § [“ + ;3smi § + Poost § ]

Chaplygin’s theorem is applicable to the problem under consideration
because the system is not conservative. For the construction of the
equations of equivalence one uses only the last equation. Here

12 cot
Oy =0, Dss = Sa5ini g F Poos? g Oz = 0

We will look for the function F in the form

1
F = 7 (buﬁ'2 -+ bggy" + basa'a -+ 2bnz’y' -+ 2bmx’a’ + Zb”y’a’)
with coefficients that depend only on ©. Because of (2.9),

M = —bux’ — by’ — bysa’, Ay = — bygx’ — bagy’ — bagget’

Solving the equations of the extremals for a'’ we obtain

14d
Rso=0, Rss:———'—'A

1

da 9ass
Ry = ¢ [ o (b1 — @1sb — Ggsbua)+ —o aa (Bas — Gzaba — ambm)]

where
A=alb uta oabaz + bss + 2a15825P12 — 2313b18 — 28asbas
We have two equations of equivalence

1 dA Pecot @

Ry =0 & Adf — T pPsin®p -t {2cos?h (7.3)

The first equation of (7.3) will be satisfied identically when bll =
bogs byg = by3 =

b23 = 0. Solving, next, the second equation of (7.3),
we find

A=mVp+ Eco®§ = by ({cot? § -+ a?) - b (7.4)

Selecting by, = b11 (p2 - cxz), we obtain b“ = u/‘J (p2 + 12 cotze) and

1

S — W ) 1.5y
2 14 PT I Fcot3 § m
Furthermore, by solving Euler’s equation for the variational problem
with the function F (7.5), and with the equation (7.1), for z", y', «”
and substituting
A= — mx Aa my

Vel + Beot?f = —sz+l’co§‘29
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we obtain the accelerations of the real motion.

If one considers the problem in the space «, then
——— e m ———————ee e
by=by=0, A=by=mVp?+ Bcot?h, F=_2“sz+lzoot"? ga2

b) Suppose that the position of the system is determined by two
Lagrange coordinates restricted by nonholonomic equations of constraints
©=g¢q," =gy - (g *gy) =0, and suppose that the kinetic energy of the
system is T = (q{2 + qz'z), while the force function U = 0. Then the
equation of motion of Routh will yield

" 1 ’ LAy 1 ’ ’
" =3 (g' +¢), " =7+ g

We are looking for a function F of the form

1 9
F = 5 (bug1'? + 2b12g1'¢2" -+ baags’®)

Then the multiplier A = - F/(q, + ¢5), in view of Equation (2.14). It
is easy to give a particular solution of the corresponding equations of
equivalence: bsk = (q + qz)csk, where c.p BTE constants connected by
the relation c;; - 2¢;, + ¢y, = 0 (which implies that c,;, # 0, ¢ 7 cyp).
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